If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14k^2+168k=0
a = 14; b = 168; c = 0;
Δ = b2-4ac
Δ = 1682-4·14·0
Δ = 28224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28224}=168$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(168)-168}{2*14}=\frac{-336}{28} =-12 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(168)+168}{2*14}=\frac{0}{28} =0 $
| m/11.75m=8.25 | | 7(2x+4)=20 | | m+11.75m=8.25 | | 11.75m=8.25 | | 2x+10+x+80=180 | | n/26=34 | | c/16=5 | | 6(3w−7.2)=79.2 | | -4m-8=40 | | 6*x-3=27 | | F(n)=3n-3 | | 43=^-17+4x | | t/15=90 | | -v/7=-58 | | s/4=1.5 | | ⅔(6x-12)=12 | | 7c-3=3 | | (15,-9)=4/5x | | 6b=2028 | | m+24=48 | | 6x7=6(4+)+42 | | 14=w/4-16 | | 4y−2y=18 | | 29-4m=-7 | | 6|5x+9|-7=89 | | x=252x, | | -16=-14-2x | | n/7-13=11 | | 4x+6+4x+6=x | | x8=13 | | 3x+1+5x=43 | | -27-8x=5 |